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The theory of rotating open-channel flow between two basins is presented and experi- 
mentally verified for three cases. The first case considered is the submerged weir-flow, 
i.e. the height of the channel floor is below the free-surface height of the fluid in the 
lower basin. Flow for this case is found to depend on the fluid level in the downstream 
basin when the fluid level there is high and is independent of the fluid level down- 
stream as soon as the level falls below a critical height; a t  that point the flow in the 
channel becomes critical (controlled). The dependence of the flow on upstream 
potential vorticity and on rotation rate is also examined. It is shown that transport 
of the flow decreases whenever rotation rate or upstream potential vorticity is in- 
creased. The second case studied is controlled flow through a channel of irregular 
cross section (the truncated channel). Transport of this flow is shown to increase at 
some moderate rotations if the channel floor has a cross-channel slope similar to that 
of the surface of the current. Otherwise, the transport always decreases with rotation 
rate. The final case is concerned with supercritical separation of the current down- 
stream of the control section, i.e. the current separates from the left wall of the 
channel (looking downstream). Visual evidence and measurements of formation of such 
a boundary current are obtained. Comparisons between the theory and the experi- 
ment for the three cases are generally reasonable except when flow separates in the 
control section; the theory is found inapplicable to such separation. 

1. Introduction 
The classical hydraulics of flow over a weir (or dam) from a reservoir has been 

re-investigated in recent years for a rotating fluid system. Renewed interest in this 
classical problem is motivated by its possible use as a model for studying the flow of 
dense bottom water over submarine ridges. Such a model is feasible because observa- 
tions (Stalcup, Metcalf & Johnson 1975; Lonsdale 1977; Worthington 1970) have 
shown that the submarine ridge often acts as a dam in trapping the bottom water 
and restricting flow of the water to narrow straits and shallow sills atop the ridge. 

In  the ocean the effect of the earth’s rotation on the current is important, so it has 
been necessary to study weir flow in a rotating frame of reference. There have been 
several investigations of this rotating weir problem; Stern (1972, 1974) studied 
theoretically the stability of the flow at the weir section. Whitehead, Leetmaa & 
Knox (1974) and Sambuco & Whitehead (1976) presented both theory and experi- 
ments for zero potential vorticity flow over a weir, i.e. the flow coming from a deep 
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basin, Later, in a more detailed theoretical study, Gill (1977) obtained results for 
finite potential vorticity flows applicable to basins of all depths. 

In  this paper, additional theoretical and experimental investigation of the rotating 
weir flow will be presented. Specifically, three problems will be considered. The first 
one is constant potential vorticity flow over a submerged weir, in which sill height is 
below the free-surface level of the fluid in the downstream reservoir as opposed to the 
case in which the free surface is below the sill as investigated previously. The second 
one is controlled zero potential vorticity flow through a channel of irregular cross 
section (henceforth, the channel refers to that part of weir where the water overflows). 
This is a generalization of the problem studied by Whitehead et al. (1974). They 
previously studied the flow through a rectangular channel. The effect of an irregular 
channel geometry will be examined here. The third problem is concerned with super- 
critical separation of the current. The current will be shown to separate from the 
left channel wall in the downstream section of the weir (in this paper, left and right 
are for an observer looking downstream). Evidence of the formation of the boundary 
current will be obtained and the location of the separation will be examined. This 
problem is relevant to the ocean bottom boundary current observed downstream of 
sea straits (for example Worthington 1970). 

Investigation of these three problems represents some extension and generalization 
of previous studies. Equally important, experimental verification of the theory will 
also represent a further test of the concept of hydraulic control. This concept is an 
essential element in the theoretical description of weir flows. Simply stated (see also 
Q2), it  asserts that the flow speed should be equal to the long-wave speed at  the 
narrowest section (called the control section) of the weir. The implication of this 
‘control’ statement is that the current in the weir should be insensitive to downstream 
conditions since disturbance downstream cannot propagate past the control section. 
In non-rotating hydraulics, such control by the weir has been proved to be of con- 
siderable practical value in determining weir flow, since the problem is now greatly 
simplified with omission of the downstream condition, which is often difficult to 
specify and pose properly. (The theoretical basis of hydraulic control follows from 
consideration of the flow over a weir having a smooth and gradually varying down- 
stream geometry. Gill (1977) has given a general theoretical demonstration of the 
control by the weir under this assumption of smooth geometry. In practice, the 
geometry for realization of the control is not so restrictive, as frequently demonstrated 
in non-rotating hydraulics.) Whether the same concept of hydraulic control is applic- 
able to rotating open-channel flow under different downstream conditions is obviously 
of interest. The problems considered here will permit a test of the concept for rotating 
flow subjected to different downstream conditions. In the problem of submerged 
weir-flow, the downstream fluid level will be varied. In  the problem of the irregular 
channel, the control section is non-uniform, and the downstream section of the weir 
has an abrupt end. Lastly in the problem of supercritical separation, the downstream 
section has a flared opening. The theoretical description of the problems, however, 
will proceed as usual under the assumption of a gradually varying channel. 

This paper, therefore, will begin in $ 2  with the governing equations for an open 
channel under this assumption and a discussion of the concept of hydraulic control. 
In Q 3, a theoretical discussion of the three problems mentioned above will be presented. 
The experiments are then described in Q 4. Theory and experiment are compared for 
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the three cases in $5 .  The results are summarized and their relevance to the ocean 
currents in straits and sills are discussed in $6.  

2. Equations for rotating open channel flows 
Essential to the description of channel flow is the approximation that the geometry 

of the channel varies slowly along the direction of the flow. This makes the problem 
tractable and yet still retains some nonlinearities of the flow through the conservation 
of the Bernoulli function and the potential vorticity. For the convenience of the 
subsequent discussion as well as to establish notation, we shall state the equations 
of motion under the approximation and some results concerning hydraulic control. 

The approximation essentially comes in two stages. The first is that the vertical 
elevation of the channel floor varies gradually. In this case, vertical velocity and 
vertical acceleration are negligible and the equations reduce to the familiar shallow 
water equations (for a homogeneous fluid), 

U.V,U+fkxU = -VP,  
ap/az = - g ,  

V,.UH = 0, 

(2 . la)  

(2 . lc )  

(2 . lb )  

where U = ui+ vf is the horizontal velocity vector (see figure 1 (a)  for the co-ordinate 
system), P the pressure divided by the density of the fluid, f twice the frequency of 
the rotation, g the gravity, H the thickness of the fluid, and V, = (a/ax)$+ (a/ay) j .  

The above equations can be manipulated to yield two equally familiar conservation 
equations which are the Bernoulli equation, 

U.v,[+Iu12+g(H+9)1 = 0, (2.2) 

U.V,[(f<.V,xU+f)/HJ = 0. (2.3) 

where 9 is the elevation of the channel floor, and the potential vorticity equation, 

Since the continuity equation implies a streamfunction @ with HU = f< x V,$, 
both conservation equations are functions of $. Furthermore, letting 

E = &(U2+v2)+g(H+9) 

and II = (av/ax - au/ay+ f ) / H ,  it can be shown that 

Thus, knowing the value of the Bernoulli function on one streamline, the values on 
the remaining streamlines are determined if II is known. 

The next stage of the approximation is that the cross-stream width of channel 
varies gradually along the direction of the flow. In this case, the cross-stream velocity 
u and its derivatives are negligible and so is the y derivative of v. The shallow water 
equations then reduce to the simple geostrophic relation 
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FIGURE 1. (a )  A sketch of the co-ordinate system and the channel-basin configuration. ( b )  A 
sketch of the subcritical separated flow, where the shaded area is the stagnant fluid. In  (a)  
and (b ) ,  the short-dashed line is the free streamline separating the current from the fluid in the 
downstream reservoir. 

with the continuity equation replaced by the constancy of the transport, 

Q = SZ2 w~ t-ix = constant, 
21 

where x1 and x2 are a t  the walls of the channel (figure 1 (a)), and the two conservation 
equations reduce to 

where the subscript in (2.7) refers to streamline +,(x2 = 0). Thus, in their final form, 
the equations are independent of the downstream co-ordinate y and the flow is to be 
determined locally at  each cross section of the channel. Of course, this does not mean 
that the flow itself is independent of y. It depends on y implicitly through xl, x2 and 
7. In  addition, the flow at each section is related globally through the first integrals, 
i.e. the conservations of Q ,  E ,  and 11. 

The foregoing equations generally yield two solutions representing two types of 
flows, one is the so called subcritical flow which has a speed less than the long-wave 
speed. The other, the so called supercritical flow, has a speed greater than the long 
wave speed. The appropriate solution is usually determined by the type of flow 
specified upstream. However, if the flow speed equals the local long-wave speed at  
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some section along the channel, then the flow will change character, for example, from 
subcritical upstream to supercritical downstream, and vice versa. When this occurs 
the flow is said to be controlled, and the cross section at  which the transition occurs 
is called the control section. The flow having the long-wave speed in this case is called 
the critical or the controlled flow. In addition to the long-wave speed, a controlled 
flow is also defined by these additional characteristics: its volume transport is the 
largest a t  a given Bernoulli energy, or its specific energy and momentum a minimum 
at a given transport, and it occurs a t  the minimum construction (the control section). 
A summary discussion of these characteristics is presented in the Appendix, where 
we also give definitions of specific energy and momentum for rotating flows which do 
not appear to have been previously discussed. For a more formal discussion of 
hydraulic control, see Gill (1977); also see Stern (1979) for some general principles 
of control. These characteristics provide the means for computing the control flow and 
the control section. For the rotating weir problem, we will have the occasion to use 
them for determining the flow in the weir. 

3. Rotating channel flow between two basins 
In  this section we shall derive theoretical results on rotating channel flow to be 

tested in the experiment. The model considered here is that of two large basins 
connected by a channel with fluids flowing from one basin into another through the 
channel. In  this model the free-surface levels of the fluids in the basins will be assumed 
to be given. The problem is to determine, given these levels, the free-surface height and 
the velocity of the current in the channel. For comparison with the experiment, the 
flow will be computed for three cases; the submerged weir-flow, the controlled flow 
through an irregular channel, and the supercritical separated flow. Each of these 
will be discussed separately below. But first, as in previous investigations (Whitehead 
et al. 1974; Gill 1977), we assume that the two basins are sufficiently large so that the 
transfer of fluids between the basins affects the fluid levels in the basins insignificantly 
and a steady state is maintained. Secondly, all fluid motions in the upstream reservoir 
are directed toward the channel, i.e. no flow reversal occurs. Thirdly, the flow begins 
from rest, such as by breaking a ‘dam’, so that, as the flow settles to a steady state, 
the potential vorticity everywhere in the upstream basin and in the channel is given 
by f /H,  and the Bernoulli energy along the right wall looking downstream is given 
by gh,, where H, and h, are respectively the initial depth and height of the fluid in 
t’he basin; here h, is measured relative to a reference level located midway between 
the maximum sill height and the floor of the basin (see figure l(a)). The basis for 
choosing gh, on the right wall is that the Kelvin wave that signals the initiation of the 
flow after the dam break has its amplitude confined near the left wall (looking down- 
stream). Hence the surface on the right wall will likely remain a t  the initial height 
h,. Lastly, it will be assumed as usual that the wall and floor of the channel and of 
the basins vary gradually and smoothly. The case of submerged weir flow is considered 
first. 

3.1. Submerged weir-$ows 

In this problem, the free-surface height of the fluid in the downstream reservoir is 
above the height of the channel floor. The dependence of the flow on the height of the 
fluid level downstream will be examined under rotation. For simplicity, the discussion 
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will be restricted to a channel having a rectangular cross section, i.e. 7 = ~ ( y )  
only. 

Since II($) = f/H,, the structure of the flow can be obtained readily from (2.5) 
and (2.8) which give the depth 

and the velocity 

where A = f/(gH,)t is the inverse of the Rossby radius of deformation. v,, and H,, are 
the constants of integration representing, respectively, velocity and depth along the 
right wall x2 = 0 (see figure 1 (a )  for the co-ordinate system). 

Two boundary conditions are obviously required to complete the solution. In  the 
free discharge problem studied here, the boundary conditions are provided by the 
fluid levels in the upstream and the downstream basins. The application of the up- 
stream condition is straightforward. The fluid level there is easily related to the flow 
through the Bernoulli function (2.7) along x2 = 0, i.e. 

H = (H, - q4) cosh Ax + v,(H,/g)t sinh Ax + H,, 

v = (H, -H,) (g/H,); sinh Ax + vo cosh Ax, 

(3.1) 

(3.2) 

gh, = M+g(H,+rl),  (3.3) 

since x2 = 0 is a streamline and E = gh, by assumption. 
Relation of the downstream condition to  the flow, however, is not trivial, because 

the fluid discharged into the lower basin differs kinematically from the initially 
stationary fluid in the lower basin, and so one can no longer use the Bernoulli function 
or the potential vorticity equation to connect the flow. The lack of a properly posed 
boundary condition is in fact the central difficulty in the study of the weir flow 
problem. In  this problem, we will assert that the free-surface height of the current 
on the left wall, x = - bm, of the control section (the narrowest section) matches with 
the fluid level in the downstream reservoir, i.e. 

where 7, = a( - b m )  = constant, and the subscript m denotes the control section. 
This matching condition is supported by our experimental observations and also 
appears reasonable based on physical argument; for example, in Gill’s (1976) des- 
cription of the dam-break problem in a constant depth, straight channel, he showed 
that following the dam break a Kelvin wave is generated and the current downstream 
is deflected to the right wall. In  the present problem, the flow may be assumed to 
begin from the same initial state; the flow then would evolve similarly with the 
deflection of down stream current to the right wall. It thus appears natural that the 
left edge of the current surface matches with the fluid level in the lower basin. More- 
over, for a steady flow evolving from the Kelvin wave, as assumed here, the free-surface 
height of the flow field everywhere (in the basins and in the channel) cannot be less 
than the lower basin fluid level, h,, since this is the minimum surface elevation of the 
Kelvin wave here. This constraint would further require the matching of the fluid 
and the current surface to begin a t  the control section; hence (3.4) follows. (If the 
height is matched outside the control section, one can easily show by repeating the 
calculation below that the assumption of a Kelvin wave would be violated.) 

Condition (3.4) will be used below for the derivation of the flow field. A qualification 
to (3.4), however, should be stated: that is, it applies only when the flow in the control 
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section is subcritical. As will be seen later, this implies that (3.4) is valid only for h 
above the free-surface height of critical flow. When the flow reaches the critical or the 
long-wave speed, the flow will become independent of both ha and (3.4), and at this 
point, the critical speed will also be the maximum speed that the flow can have in the 
control section. The reason for this limiting speed is the theoretical result stated in 
$ 2  that the transition from subcritical to supercritical flow can occw only in the 
narrowest section of a channel in which the flow is critical. In  the present problem 
the flow upstream is always subcritical; according to this result, then the flow can be 
a t  most critical and never supercritical in the control (narrowest) section. Hence, the 
flow speed in the control section is bounded by the critical speed. The following 
discussion begins with the subcritical flow given by (3.4). 

Applying the boundary conditions (3.3) and (3.4) at 7, and - b,, one obtains 

vom = - (gH,)1 tanh Ah, + [gH,, tanh2hb,, - 499, + 2g(Hu - hd + vm)/cosh Ab,]*, (3.5) 

which give the desired solution at  the control section. From H,, and ha, the transport 
is also readily computed, since 

(3.7) Q, = (gI2.f) [Hi, - (kz - vd21. 

With the transport determined at  the control section, one can now construct the 
flow field upstream of the control section. Since the flow profile will be continuously 
described by (3.1) and (3.2) in the upstream section, it is only necessary to determine 
the dependence of H,, vo on the geometry by solving for either v, or H,, using (3.3) 
and the transport relation (2.6).  In favour of a simpler expression in terms of v,, the 
desired relation is 

h, = D(vo) coth hb - D(v,J2 - 2 - Q, (3.8) sinh hb + vi/2g + q, 
9 I:! 

where 
D(v,) = v,,(H,/g)a + H,( - 1 + cosh hb)/sinhhb. 

In this derivation, a local co-ordinate system for x has been used, i.e. x = 0 is always 
located at the right wall looking downstream (figure l ( a ) ) .  Equation (3.8) has two 
roots for vo, given q and b. In the upstream direction, the appropriate root is the one 
having v,, < v,,. The upstream flow field given by this root has the appearance of a 
boundary current, with the volume transport concentrated along the left wall and 
decaying exponentially into the interior (see Gill 1977 for a detailed discussion of the 
upstream flow field). It should be remarked that (3.8) is applicable only from the 
upstream to the control section. The downstream current is fixed by the fluid level of 
the lower basin, and the geometrical dependence in (3.8) becomes irrelevant. It 
should also be noted that the first two terms on the right-hand side of (3.8) are also 
the expression for H,, which has to be real and positive for (3.8) to be valid. The 
appearance of the square-root sign thus requires that D(v,)2- 2f Q, > 0, or 

V,(H,/g)B +H,( - 1 + cosh Ab)/sinh hb > 2fQJg. 
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The inequality is satisfied only if b increases sufficiently rapidly relative to the decrease 
of w,, in the upstream direction. 

Equation (3.8) together with (3.5) and (3.6) complete the solution of subcritical weir 
flow between two large basins. As stated earlier, the maximum speed that this flow 
can have is the critical or long-wave speed. This limiting speed can now be obtained 
from (3.8) using one of the critical flow criteria summarized in 3 2, namely, minimiza- 
tion of specific energy. In the present problem, this is equivalent to minimizing (3.8) 
with respect to wo at t,he control section, i.e. a(h, - v)/awo = 0,  at 7,. The result is 

where V, = worn - ( 1  - cosh hb) (gHu)3 sinh hb. From this equation the speed is deter- 
mined by eliminating the transport &, with the aid of (3.8). (No closed form for worn 
can be obtained, however. With regard to the critical flow, reader may wish to refer 
to Gill's paper (1  977) for additional details of the flow not discussed here; an expression 
of critical height is also given in his paper.) The subcritical speed given by (3.5) varies 
inversely with the downstream level, h,. Thus, as remarked at the beginning of the 
discussion, the limiting critical speed also implies a minimum downstream level, 
below which the flow will be unaffected by h,. This departure from the downstream 
condition (3.4) will be useful later in the experiment for it provides a convenient 
means for identifying the transition from subcritical to critical flow. 

Equations (3.5) to (3.7) and (3.9) express speed, free-surface height, and transport 
as functions of h,, h, f and H,. Alt,hough the equations can now be examined for effects 
of these parameters on flow properties, the equations are not uniformly valid for all 
parameter values. The limitation arises from our assumption of no flow reversal for 
free-discharge flow. This assumption requires vom 2 0 at all times. The condition for 
vanishing worn, given by equating the sum of the last two terms in (3.5) to zero, is 

cash hb, - (AH + 2vm)/2vm = 0, (3.10) 

where AH = hu - h, and H, - h, = AH + qm have been used. The flow reversal occurs, 
on the other hand, when the sum of the last two terms in (3.5) or, equivalently, the 
sum of the two terms on the left-hand side of (3.10) becomes negative. Thus, for the 
equations to be valid under the no-flow-reversal condition, the parameters f and H, 
clearly must not be greater than, and AH not less than, the values of their respective 
roots in (3.10). 

The no-flow-reversal condition here has limited the range of parameter values to 
which Equations (3.5)-(3.9) can be applied. However, it will be possible to extend 
the steady-state solution beyond the ranges of values stated above and still to satisfy 
the no-flow-reversal condition. This can be achieved if we relax a requirement which 
has been implicitly assumed in the calculation so far: namely, the requirement that  
the flow occupies the full width of the channel. The extension of the steady-state 
solution is possible after the removal of this constraint because the parameter values 
which previously produce flow reversal can now be made to satisfy the condition of 
no reversal, (3.10), by using a smaller value of b,. In other words, rather than fix the 
width of the current to the full width of the channel, the width b, is treated as the 
width of the current and allowed to decrease so as to satisfy (5.10). The narrowed 
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current is assumed here to be supported by a pool of stationary fluid which fills the 
portion of the channel not occupied by the current; the position of the stationary 
fluid is to the right of the current so that the pressure and velocity can be continuous 
across the free streamline separating the current and the fluid. Therefore, a picture 
of the complete flow field would look like the sketch in figure 1 ( b ) .  The current with 
reduced width may be referred to here as ‘separation’ flow for its detachment from 
the right channel wall. The separation flow with a stagnant fluid region described 
above appears to be the only solution possible under the assumptions of steady state 
and no flow reversal, for parameter values outside the range of applicability of 
Equations (3.5)-(3.9). We shall assume the existence of the separation flow and 
incorporate this flow into the total solution of the channel flow for later comparison 
with experiments. (There are some difficulties, nevertheless, with the separation-flow 
solution in that the stagnant fluid region supporting the current may or may not be 
realizable from an initial state and that the free streamline separating the current 
and the stationary fluid may be unstable to perturbations. Where difficulties may be 
encountered will be indicated in the discussion.) 

There are two cases of separation flow, and it is convenient to distinguish the two 
for later comparison with experiments. The first case may be called ‘subcritical’ 
separation where the lower basin level hd is always above the sill height 7, and the 
flow is subcritical. For this case, the transport is given by 

Qm = (g/’f) (h; -h i ) ,  (3.11) 

with vh = 0. 
The other case may be called ‘critical ’ separation where hd is always below the sill 

height 7, and the flow is critical. This case has been previously discussed by Whitehead 
et al. (1974) and Gill (1977). It differs from subcritical separation in that the free 
surface always intersects the left corner of the channel floor, i.e. H (  - b,) = 0; other- 
wise, the flow field looks similar to figure 1 (b ) .  However, the critical separation flow 
may be quite unstable since the drop of the current surface downstream of the control 
section does not appear to be able to support the level surface of the stagnant fluid. 
This point will be verified in the experiment. 

The solution for submerged weir flow through a rectangular channel is now 
essentially complete, and the flow field can be examined for all values of h,, ha, f and 
H,. The main effects of the rotation f are seen here to be:twofold: first, to reduce flow 
speed and transport, and second, to bring in the upstream influence, namely H, the 
fluid depth of the upper basin. The latter tends to reduce the flow further; in other 
words, shallow upstream fluid depth H, produce smaller transport and speed. I n  
addition to these two effects, rotation also produces velocity shear in current which 
may lead to the flow separation discussed above. If this occurs, the effects on transport 
are still the same but the width of the current decreases with increasing f and H,, 
with vOm remaining a t  zero. As to the effects of the other two parameters, increasing 
h, or decreasing hd always leads to an increase in speed and transport except that 
critical flows are unaffected by ha as already indicated. So their effects on the flow 
are similar to those found in non-rotating weir flow. Lastly, it may be mentioned that 
the effect of channel width b,, not discussed so far, is similar to that produced by 
rotation on the non-separated flow. This should be apparent as b, often occurs in 
combination with f. 
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3.2. Controlled flow through a channel of irregular cross section 

This sub-section is concerned with the influence of the cross-channel geometry on 
controlled flow. The discussion will be restricted to the controlled flow having zero 
potential vorticity. This case allows fairly general channel geometry to be examined 
without unnecessary complication. The case is also most easily and accurately 
measured experimentally. The actual channel employed in the experiment is a 
‘truncated’ channel which has two vertical walls and a straight slanting floor across 
the width of the channel. The properties of the flow in this channel are easily deduced 
from the general results presented here and will be briefly discussed a t  the end. 

For a zero potential vorticity flow, i.e. A+ 0, (3.1) and (3.2) have the asymptotic 
forms, respectively, 

h = - - -x2+-v02+ho,  - f 2  f 
2g 9 

and 
w = -fx+wo, 

(3.12) 

(3.13) 

where the depth H in (3.1) has been replaced by h, the free-surface height. The 
Bernoulli function remains the same as (3.3). But the transport of the flow becomes 

Q = lo v ( h - 7 ) d x  
-6 

- = ($+vob) ( h o - f - g - x ) + f b T ,  f 2b2  fbvo 
(3.14) 

where f is the mean elevation, f = ( l /b)  / o b q d x ,  q’ - is the deviation from the mean, 
7’ = 7 - 5, and 7 is the moment of the deviation, T( l /b)  = S O b  “7‘ dx. It should be 
noted that for a completely general geometry such as the one depicted in figure 2 (a) ,  
the width b will be a function of the flow speed. Only for the special case in which the 
channel has straight vertical walls is the width constant. Therefore, the mean elevation 
mentioned above applies only to that part of the channel boundary in contact with 
the fluid. 

Before computing the controlled flow, it is worthwhile to point out a close analogy 
between the zero potential vorticity flow and the non-rotating flow. The analogy is 
most easily shown using the zero-potential-vorticity form of (3.8), which can be 
obtained by eliminating ho( = H o + r o )  in the Bernoulli function (3.3) with (3.14). The ~. 

resulting equation is - 

g(Q-fbT)  + ( fb /2+v ,J2 /2+ f 2 b 2 / 8 + g f .  
ghu = b( f b / 2  + vo) 

(3.15) 

- 
Now make the transformation E ,  = gh, - &f2b2, Q* = Q - fb?, and define an average 
velocity E = ( l / b )  Job vdx = i f 6  + vo, the equation reduces to 

E ,  = gQ,/bE+E2/2 +gi;i. (3.16) 

One recognizes this its just the familiar Bernoulli function for describing speed variation 
in a non-rotating channsl (for example, see Rouse 1961). Thus, the effect of rotation 
is to reduce E and Q (if > 0). Otherwise, the flow varies with the geometry in a way 
similar to non-rotating flow. In fact, the formula for the speed of the controlled flow 
is nearly identical with that of the non-rotating case as will be evident below. 
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- z = o  

(a 1 ( b )  

FIGURE 2. (a )  A cross-sectional view of an irregular channel. ( b )  The free-surface profile for a 
separated flow (solid curve) and a non-separated flow (dashed curve). 

The controlled flow can now be obtained by minimizing either (3.14) or (3.15) with 
respect to v,. I n  view of the possibility that b may be a function of zf,, it is simplest 
to maximize the integral form of the transport in (3.14) directly. Substituting (3.12) 
and (3.13) for v and h respectively in (3.14), replacing h, with ghu-w%/2g and using 
the fact that  H ( 0 )  = H (  - b )  = 0 if the channel wall is not vertical, one has 

(3.17) 

from which follows the average critical speed 

Vc = (2/3)4(E,-gV)J = (2/3):[g(hu-~)- f 'b2/8]: .  (3.18) 

Substitution of ijc in (3.16) gives the transport of the controlled flow, 

Qc = ( V g )  ME* - m/31+ +f G. (3.19) 

The shorter form of Gc in (3.18) is also the form for the speed of non-rotating critical 
flow. Equations (3.18) and (3.19) are general formulae for the zero-potential-vorticity 
controlled flow. As one can see, the speed of the controlled flow is independent of the 
channel geometry. It is the mean elevation and the width of the channel that  deter- 
mine the critical speed. The geometry, however, does affect the transport. The 
irregularity of the channel floor can increase or decrease the transport depending on 
the sign of 7. It can be stated approximately that if the channel is deeper (shallower) 
on the average near the left wall, T i s  likely to  be positive (negative) and the transport 
increases (decreases). The physical explanation is that the speed of the flow is greatest 
near the left wall. Since positive (negative) 7 usually implies greater (lesser) depths 
near the left side of the channel, the transport - increases (decreases) accordingly. In 
the case of the symmetrical channel, will be identically zero if the free surface 
intersects both vertical walls, and it will be positive if the free surface intersects any 
part of the channel contour which is not vertical or the channel has no vertical walls 
at all. The reason for the former is self-evident. For the latter case, the channel is 
always deeper on the average near the left edge of the flow. 

The above results have been obtained for the zero-potential-vorticity flow. The 
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results are probably qualitatively similar in the finite-potential-vorticity case since 
the flow will also have a negative shear even though it may be depth dependent. In 
this case, a deeper floor on the left part of the channel should also result in a larger 
volume flow. 

The foregoing discussion has assumed that vo > 0. When the rotation and the 
upstream height are such that 

f 2 b 2  = 2g(hU-7), (3.20) 

vo can also become zero as can be seen from (3.18). In  the case of the rectangular 
channel, v, = 0 is marked by the intersection of the free surface with the floor, which 
leads to separation of the flow. In  an irregular channel, a simple geometrical dis- 
tinction between the floor and the wall no longer exists. The intersection of the free 
surface with the boundary of the channel does not necessarily imply v, = 0 nor that 
the separation takes place. The aim here is to  show that the separation as defined by 
v, = 0,  can be achieved if H (  - h )  = y( - b )  < 7, and no separation occurs if 

H ( - b )  = v ( - b )  > 7. 
In  this latter case, the floor acts as a ' wall'. 

The result can be most easily shown by assuming first that vo = 0.  The rotation a t  
which this occurs is then given by (3.20). The free-surface height a t  the left wall is 
given by (3.12), 

h( - b )  = - f 2b2/2g -fbV,/g + ho. 

Substituting (3.20) into h( - b) ,  setting v,, = 0 and replacing h, with h,,, the height along 
the left wall is simply 

h( - b )  = 7, 

which is the depth of the fluid a t  hypothetical separation. The actual height of the 
surface a t  the intersection with the floor is v(  - b) .  Thus, if r( - b )  6 7, v, will certainly 
approach zero (figure 2 ( b ) ) .  On the other hand, if v (  - b )  > q, this would imply that the 
surface intersects the floor before vo becomes zero. Hence there cannot be a separation. 

In  the experiment, the above results will be verified with a truncated channel. - The 
floor of this channel is described by rj = ?j + (x + &b) s and it has the moment 7 = &b2, 
where s is a constant. For this channel the volume transport is just 

(3.21) 

(For s = 0, the equation reduces to  that given by Whitehead et al. 1974). Thus, the 
transport is larger for positive s ,  where the floor and the free surface of the current 
slope are in the same direction. As to the effect of rotation, Q generally decreases 
with rotation. But, for positives, (3.21) also can be shown to increase at some moderate 
rotations. The rotation a t  which Q attains a maximum is given by 

f - 8gb-2(hU - 7) f + Qg2s2b-2 = 0. 

The experiment will verify this pattern of dependence of the transport on f and s. 

3.3. The supercritical separation 

The previous two cases dealt with the subcritical and critical flows and it was shown 
that both flows under some conditions would separate from the channel wall. In the 
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following, the supercritical flow will be examined for separation. This case is of 
interest because, unlike the previous two, the separated flow will be deflected to the 
right wall and the position of the separation can be easily visualized and measured 
in the experiment. 

For this problem a rectangular channel will be used and it will be assumed that the 
level floor of the channel extends into the downstream basin, so that the only change 
in geometry downstream is the gradual widening of the channel wall. It will further 
be assumed that the downstream basin is empty so that the flow a t  the control section 
is always critical and the downstream flow is supercritical. 

Since the downstream section now represents essentially an ever widening channel 
(again consider only the zero-potential-vorticity case), the change of the flow down- 
stream can be described by (3 .15) .  It is easily shown using (3.15) that as b increases, 
vo increases and the free surface will eventually intersect the floor, i.e. H (  - b) = 0. 
Rather than computing the entire downstream field, we shall show the existence of 
the separation by directly computing the width a t  which the flow separates. 

At the point of separation, h at the left wall vanishes, and the condition a t  x = - b 
is 0 = - (f 2b2/2g) - ( f b / g )  vo + h, from (3 .12 ) .  The va.nishing of h( - b )  also means that 
Q is equal to ( g / 2 f )  h,2. Solving for vo from the above two equations gives 

By eliminating vo, (3 .12)  becomes 

gh, = ( i i f g Q P  + (gQ/fb2)  + if 'b2. (3 .22)  

But h, is related to Q, since the transport is determined by the critical flow in the 
channel. Let b, denote the width of the control section. H, is related to Q by 

gh, = Q f  2b& + %g&/b,)%. 

Using this value of yh, in (3.22),  and after some rearranging of terms, the width of the 
current downstream at which the separation occurs is thus obtained by solving 

(3 .23)  

Clearly the width will be a function of the rotation. It is straightforward to show that 
it decreases monotonically with increasing rotation. In  a flared channel, the decrease 
in width means that the separation point moves upstream toward the control section. 
As the point reaches the control section, the supercritical separation and the critical 
separation become indistinguishable. 

4. The experiment 
The experimental apparatus is basically similar to the one used by Whitehead et al. 

(1974);  the two basins are constructed by dividing a right circular cylinder in half with 
a vertical partitsion, and the weir is constructed from a short section of the channel, 
7.5 cm long and 4.4 cm wide, plaed between the two basins and across the partition (see 
figure 3 ) .  There are, however, two modifications in our experiment. One is the smoothing 
of the channel entrance; in particular, the left wall of the entrance is made smooth by 
extending it upstream and making it, part of the basin boundary (Figure 3, top view). 
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FIGURE 3. A sketch of the apparatus. 

Smoothing of this wall is important because the experiment shows that the floor in the 
channel is fed by the boundary current along the left wall. A sharp entrance wall can 
interfere with the flow - a fact confirmed by the experiment - and is to be avoided. The 
other modification is in the recirculation system. I n  order to maintain the flow in a 
steady state, the fluid discharged into the downstream basin must be recirculated back 
upstream. I n  our experiment, the fluid is recirculated back through the bottom of the 
floor with the floor, composed of simple porous materials such as wire mesh and sponge, 
acting as a diffuser. This method of recirculation allows the fluids to well up into the 
basin more evenly. We also put in a second fase bottom which is made of cheesecloth 
stretched on a rigid frame. This porous floor spreads the upwellings further. It also 
provides a smooth bottom and can be raised up and down to adjust the depth of the 
reservoir. A final small but useful improvement of the experiment is the coating of 
a thin film of nonwetting silicone grease to  the walls and floor of the channel. The 
coating prevents 'sticking' of the water to the channel wall due to surface tension 
- a  problem that can seriously hinder the observation of the separated flows. 

Our apparatus is mounted on a turntable with a variable speed drive. The experi- 
mental procedure involves adjusting the rotation rate and the pumping rate (which 
essentially gives the transport of the flow), and then measuring the height of the free 
surface in the two basins. The height is measured through a telescope with an accuracy 
of & 0.01 cm. The rate of discharge is measured with a flow meter connected to the 
submersible pump. The meter measures from 2.0 litres per minute (l/min) to 22.7 l/min 
with an accuracy of & 0*081/min. The meter is mounted vertically along the axis of 
rotation so that the centrifugal force on the met'er is minimized. The rotating turntable 
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is driven by a variable speed motor with &O.Ols/rev accuracy. The table is also 
carefully levelled before the experiment; the static tilt of the axis of rotation from the 
local gravity is no more than 10-3. The fluid used for the experiment is basically 
water. A passive layer of silicone fluid, specific gravity 0.916, is usually placed on top 
of the water whenever the effect of reduced gravity, defined as g' = gAp/p,  is desired, 
where Ap is the density difference between the two fluids and p is the density of the 
working fluid. The value of the reduced gravity can be adjusted by mixing an appro- 
priate amount of alcohol with the water. The density is measured with a hydrometer, 
which has an accuracy of i 0.002. 

I n  the experiment, no attempt is made to measure the structure of the current. The 
current speed is too fast ( N 20 cm/s) to allow it to be measured confidently. But some 
visual observations of the flow fleld are obtained and can be compared qualitatively 
with the theory. The quantitative comparison is presented in the next section. 

4.1. Observations 

I n  the channel, the feature of the current most easily observed is the tilt of the free- 
surface height of the current. Observation shows that the surface slope increases with 
rotation, and at high rotation the surface intersects the floor just as predicted by the 
theory. At still higher rotation, we are able to observe critical and supercritical 
separations (figures 4 and 5, also see next section for more details). The observation 
of the subcritical separation flow a t  low discharge rate is, however, not conclusive. 
Colour dyes are also injected to observe the speed of the current in the channel. The 
greatest speed is found near the left wall, implying a negative shear which agrees with 
the theory. The dye also shows a generally laminar current. The flow can, however, 
become somewhat unsteady a t  high rotation and large flow rate. 

I n  the upstream basin a large anticyclonic circulation covering the basin and a 
narrow boundary current along the left basin wall are 0bserved.t The anticylonic 
circulation is weak ( N 0.5 cm/s) whereas the boundary current which branches off 
from this interior circulation is rather swift ( w 10-20 cm/s). The principle role of this 
boundary current is seen to transfer the upstream fluid through the channel into the 
lower basin. The presence of such a boundary current on the left wall has been 
previously predicted theoretically. Observation seems to confirm this prediction. But 
the attempt to  compare the width of the current with the Rossby radius of defor- 
mation is not successful owing to interference by the gyre. The contribution of the 
anticyclonic velocity in the gyre to the upstream Bernoulli function is insignificant; 
it is less than 0.1 yo. The contribution to the potential vorticity is also small-less 
than 1 yo. 

I n  the lower reservoir, special attention is paid to observing the merging of the free 
surface of the current with that of the reservoir. It has been argued in the theory that 
the surface height of the current on the left wall of the control section should merge 
with the fluid level of the lower reservoir when the level downstream is above a certain 
critical height. When it is below this height, the flow in the control section should be 

t The picture reminds one of the subtropical gyre and the western boundary current. But 
the resemblance is only superficial. A simple test such as tilting the floor of the basin shows 
that a sloping floor, the equivalent cf the variable coriolis parameter in the ocean, has no effect 
on the formation of the boundary current'. 
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FIGURE 4. Top view and front view of zero-potential-vorticity flows in a rectangular channel 
(rows 1 and 2, /3 = 0) and two truncated channels (rows 3 and 4, h = 0-29; rows 5 and 6, 
/3 = - 0.18). The frequencies of the rotation for the four frames on each row are ( a ) f  = 0.0 rad/s, 
( b )  f = 3.60 rad/s, (c) f = 6.28 rad/s, and ( d )  f = 8.38 rad/s. The odd-numbered rows are the 
top views. In  each of the top views, the outline of the channel is given by the two parallel white 
bars. The direction of the flow is from top to bottom. Note the deflection of the current to the 
left of the picture as the rotation rate increases. The white area near the right side wall of the 
channel shows where the current has separated and it is not occupied by the current. The even- 
numbered rows are the front views. The flow is out of the page. The tilt of the free surface is 
clearly visible. 
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FIGURE 5. Top view and front view of zero-potential-vorcitity flow in a flared rectangular 
channel. Column A shows the top view, in which the current flows from left t o  right. Column 
B shows the front view, in which the flow is out of the page. The frequencies of rotation f are 
(1) 0.0, (2) 1.58, (3) 3.14, (4) 0.28 and (5) i'.Orad/s. In  the front view, the current is marked 
by the dark colour dye. The area unoccupied by the current appears white. The separation of 
the current from the wall is visible and note its upstrdam movement with increasing rotation 
rate. 
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independent of the downstream level. In the experiment, such matching conditions are 
indeed observed; the current deflects to the right wall as it leaves the control section, 
and the surface on the left edge of the current follows the fluid level of the lower basin 
whenever the downstream level is high. When the level is low, the surface height of the 
current ceases to follow it and remains unaffected by the level of the lower reservoir. 

5. Comparisons between Theory and Experiment 
An important step in the data reduction is normalizing the measured transport with 

respect to some reference value - principally the transport of the critical flow. In this 
experiment, the measured transport is consistently lower than predicted. Normali- 
zation helps to remove such systematic offset and still allows measurements to be 
compared with theory. The lower transport measured is believed to be caused by 
friction. Evidence of this is the observed small downstream decrease in the free-surface 
height along the channel-an indication of the loss of pressure head (and hence 
transport) due to friction. Some estimate of the possible loss is also obtained based on 
a simple viscous boundary layer consideration (see figure 6 and its caption), and the 
percentage of loss is consistent with what has been measured. It should be mentioned 
that the reduction of transport by friction has been long noted in classical open- 
channel hydraulics (for example, Houton 1907; Chow 1959). The percentage of 
reduction given in classical hydraulics for similar parameters is about the same as that 
observed in our experiment. Bearing this in mind, we present comparisons between 
theory and experiments for the three cases. 

5.1. The submerged weir-$ow 

There are two sets of measurements involved in the experiment; one is used to compare 
the transport for different potential-vorticity flows, and the other to compare the 
transport at  different rotations and surface heights for a non-zero potential-vorticity 
flow. The latter measurements are quite insensitive to the depth change of the upper 
reservoir and allow a wide range of rotation rate and transport to be examined. We will 
consider this case first. For this case, the actual potential vorticity given by hb, is 
about 0.1, but may be regarded as zero since its transport differs by only 0- 1 yo from 
that of the true zero-potential-vorticity flow. The experiment is carried out by 
measuring the upstream and downstream free-surface height for different increments 
of transport at  a fixed rotation rate. (For convenience, the free-surface heights are 
measured relative to the maximum elevation of the channel floor. Such a choice of 
reference level will be used for measuring surface height in all the experiments reported 
in this paper.) This procedure produces measurements through two flow regimes, sub- 
critical to critical, as the transport is increased. The two regimes are distinguished in 
the experiment by watching for the occurrence of a drop in the free-surface height at  
the mouth of the channel. According to the theory, such a drop signals a critical flow. 
In  order to compare the measurements with the theory as well as to distinguish the two 
regimes, all transports are normalized with respect to the transport at  which the flow is 
just  critical (the actual value of this critical transport is shown in figure 6 ( b )  as a 
percentage of the expected value). These normalized values are then plotted as a 
function of the upstream height. The plot, with the values indicated by cross-error bars, 
is shown in figure 7, where h; is the dimensionless height obtained by dividing the 
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FIGURE 6. Percentage of the measured transport $, to the theoretical transport Q,, ( a )  as a 
function of the upstream height h, for the non-rotating controlled flow, and ( 6 )  as a function 
of the rotation L = f 6 / ( g ' h ) 4  for the rotating controlled flow used in figure 7. In  (a ) ,  the dashed 
line is the estimated ratio between the theoretical transport and the transport based on a 
simple viscous boundary-layer consideration ; let the layer be approximated by S = [vZ/(2g'h,)t]a, 
where v 21 0.01 cm2/s is the kinematic viscosity, 1 = 7.5 cm is the length of the channel, and 
(2g'hU/3)* is the approximate speed of the flow with g' -N 82 cm/s2. The ratio of the cross- 
sectional area of the flow excluding the viscous layer to the uncorrected area is about (1 - 36/h,) 
(1 - 2 S / 6 )  assuming viscous layers on these walls of the channel and at  the interface. Another 
2% may be subtracted from this ratio to account for the capillary effect at the walls. The 
dashed line is the final ratio for different h,. 

measured height h, by z, the mean height between the two basins, and L = f b/(g'fE)* is 
the dimensionless rotation rate. Note that only the dependence on h, is given because 
the total fluid volume of the two basins is conserved, which allows h, to be related to h, 
by h, = 2E - h,. On the same figure, the theoretical curves of transport against upstream 
height are plotted as solid lines: the dash lines mark the theoretical boundaries of the 
flow regimes. The formulae for these curves are given by the zero-potential-vorticity 
form of (3.7), which corresponds to (3.21) with zeros and Ti, for non-separated flows, and 
(3.11) for separated flows. A listing of the formulae grouped according to flow re imes 
along each curve is shown in table 1, where the formula has been non-dimensionalized as 
indicated above as well as normalized. The normalizing factors D, and D, in the table 
are the dimensionless critical transport predicted from initial z, f and b,  or simply L, 
using (3.21) and (3.11), respectively. 

As one can see from figure 7, there is a general agreement between theory and 
experiment. At zero rotation, which is the classical weir-flow case, the agreement is 
quite reasonable especially in the mid and low range of transport. At higher transport, 
the measured value is somewhat lower which indicates a possible need for higher 
frictional corrections. For the rotating flow, the agreement again looks acceptable 
except perhaps for the case of rapid rotation, L = 1.865. At this high rotation rate the 
fluid surface in the reservoir becomes wavy and measurements become less accurate. 
The lack of measurements a t  low transport is due to the very low pumping rate 
required, which cannot be monitored with our flow meter. This lack of measurements 
has prevented us from verifying satisfactorily the subcritical separation flow. Only two 
measurements a t  L = 1.132 can be made in the subcritical separation regimes, and 
agreement with the theoretical curve is marginal. 
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L < 2  L 2 2  
I. Critical (2h:/3 - L2/12)*/Dl (2h:/3 - L2/12)4/D, 

[2(h:- l ) f - L / 2 ]  [2-h:+L(h:- l ) & - L ' / 4 ] / D ,  - 11. Subcritical 

with separation 

with separation 

111. Subcritical 2(hi-  1) L-l /D,  2(h:- 1) L-'/D, 

L-l/D, - IV. Critical 

TABLE 1. Transport formulae for the curves in figure 7. 

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

h: 

FIGURE 7. Transport, &' = Q/QCi, of zero potential vorticity, submerged flows versus upstream 
height, hi = h,/& at various rotations L = j b / ( g ' E ) & .  QOi is the critical transport at the tran- 
sition from the subcritical to the critical flow. is the mean height of the fluid between the two 
basins. The solid lines are the theoretical curves, see table 1 for the formulae of the curve. The 
dash lines are the boundaries of the flow regimes: (I) critical, (11) subcritical, (111) subcritical 
with separation, and (IV) critical with separation. The crosses denote the measurements. The 
length of the bar is the uncertainty of the measurement. 

The next set of measurements is for comparison of different potential-vorticity 
flows. We choose to compare the transport of the different potential vorticity flows at 
a given upstream height. For the submerged-weir-flow experiment, this means fixing 
the upstream height and varying the downstream height. The required potential- 
vorticity flow is obtained by adjusting the floor of the upstream reservoir to the 
desired depth. Figure 8 (a) shows the theoretical curves (solid line) of transport against 
the difference in the fluid levels between the two basins for three potential vorticities, 
A' = 0.3, A' = 0-6 and A' = 0.94, where A' = f b,/(g'H,)* is the dimensionless form of 
the potential vorticity. The curves are obtained from (3.7) by normalizing it with 
respect to the critical transport a t  the respective potential vorticity. The similarly 
normalized measurements are given on the same figure as the crosses. The agreement 
with the theory is apparent; i.e. the transport decreases as A E  becomes small. For 
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FIGURE 8. (a )  Transport, Q' = Q j Q ,  versus AH' = AHfh,  for three finite-potential-vorticity, 
submerged weir-flows, A' = 0.3, 0.6, and 0-94, where A' = fb/(g'H,)i and Q, is the critical 
transport. The lower end of each solid (theoretical) curve terminates at the subcritical separation 
except for A' = 0.94 where the separation point is out of range. ( b )  Critical transport, 

QL = Q,(A')/Q, (A' = 0*3), 
versus potential vorticity A', where (?,(A' = 0.3) is the critical transport at A' = 0.3. 

comparison between different values of A', another graph is made in which the trans- 
port of the controlled flow is plotted against A'. The result is shown in figure 8 ( b ) ,  where 
both the measured (cross) and the theoretical transport (solid curve) given by (3.7) and 
(3.11) have been normalized with respect to the transport at  A' = 0.3 (the actual 
measured transport of A' = 0.3 is smaller than that of the theory by about 10 yo). The 
trend of decreasing discharge with increasing A' is clearly shown by the measurement, 
in agreement with the theory. The comparison, however, appears to be less satisfactory 
at high A' where the measurements attain somewhat larger value. This larger value 
does not appear to be caused by friction which would likely have reduced the transport. 
The conjecture here is that it might be caused by upwelling in the basin, since the 
upwelling can conceivably affect the vorticity of the flow by vortex stretching -which 
is given by the upwelling rate over the depth. For a deep basin, the upwelling has no 
consequence, but for a shallower one the stretching effect may be magnified. 

5.2. Controlled $ow through a truncated channel 
In  this experiment the measurements are obtained for a zero-potential-vorticity fluid 
only (the actual potential vorticity is 0.1; as before it can be regarded as zero). As in 
Whitehead et al. (1974), the experiment is carried out by holding the transport constant 
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FIGURE 9. Upstream height, hh = h,/h,,, of the zero-potential-vorticity controlled flow versus 
rotation, I = fb/(8g’h,,)a, for different cross channel bottom slopes, p = sb/2h,, where h,, is 
the upstream height at  the zero rotation and is referenced to the highest point of the floor as 
opposed to the average height of the floor. The dashed line on each curve indicates the point 
of theoretical separation. The formula for each curve is given in table 2. The experimental 
points are indicated (a )  0 ,  /3 = - 0.22;  x , p = 0.40; 0, p = 0.94. ( b )  All points for p = 0. 

Slope Range Formula 

P > O  hi k 412-p h: = [(l +p)8 - ( 2 ) h  p11) + z 2  - p 

P < O  h; 2 4Z2- 2/3 h:, = [( l-p)~-t(p)’p1]4+12-p 

p = 0  h; k 412 h: = 1 2 $ 1  

p = 0  h& G 412 h’, = 212+($) (Z-l/J3) 

(non-separated) 

(non-separated) 

(non-separated) 

(separated) 
p = sb/2h,,, I = fb/(8g’hUo)*,  h; = h,/h,,. 

TABLE 2.  Upstream height formulae for the curves in figure 9 
~ ~~~~~~ ~ 

and measuring the upstream height at  various rotation rates. Since the transport is 
constant, normalizing the transport now becomes equivalent to normalizing the 
upstream height. The convenient reference height for normalization here is the 
upstream height for no rotation. The theoretical curves of the normalized upstream 
height hh against the dimensionless rotation rate I for various values of p, the dimen- 
sionless slope of the truncated floor, are shown in figure 9 (a) and ( b ) .  The formulae that 
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correspond to each curve are given in table 2. These formulas are obtained by nor- 
malizing (3.21) with the transport for no rotation. (Here, again, the maximum 
elevation of the channel floor is used as the reference level for measuring height, and 
so in (3.21) 7 is equal to -+blsl.) Each of the curves in figure 9(a )  and ( b )  has two 
regimes separated by a vertical dashed line. To the left of the line are critical flows 
without separation, and to the right are separated critical flows defined by w,, = 0 (see 
93.2) if /3 2 0 and by the intersection of the free surface with the floor if /3 < 0. 
Similarly normalized measurements are also given in figure 9 (a )  and ( b ) .  It can be seen 
that in the non-separated flow regime, the agreement with theory is quite satisfactory. 
In  the case of /3 = 0, the measurements follow the curve closely and show clearly that 
a greater hydrostatic pressure is required to drive the flow at high rotation. For /3 > 0 
the measurements also follows the curve. In particular the interesting small drop in 
hh is clearly confirmed by the experiment. Furthermore, figure 9 (a )  shows that h: for 
/3 > 0 is on the average lower than that of the case for /3 < 0, indicating that a positive 
slope favours the transport. The generally good agreement with the theory just 
described however, fails in the separated flow regime (figure 9 ( b ) ,  shown only for the 
/3 = 0 case). The possibility of the breakdown of the theory in this regime has been 
noted earlier in $ 3  (note that the lower measured value implies a greater transport than 
that of the theory; this rules out friction as a cause of the discrepancy). The theory 
there shows that if a separated flow is to occur, a stagnant fluid region must form to the 
right of this flow. It is felt that the stagnant region cannot be maintained downstream 
and. a separated flow such as given by the theory may not be realized. The measure- 
ments apparently agree with such an assessment. In the experiment, some visual 
observations of the separated flow are also made. It is observed that the upstream 
boundary current that enters the channel becomes narrower than the channel entrance 
at  high rotation, and there does appear to be a tendency for the stagnant region to 
develop near the right corner of the entrance. But, immediately after the boundary 
current enters the channel, the current is deflected by the rotation to the right-hand 
wall, causing the stagnant region to break down and the flow to become non-uniform. 
Figure 4 is a series of pictures of the top and side view of the channel flow, and one can 
see the deflection of the current from the left wall to the right wall at higher rotation 
rate. 

In the separated regime, our measurements of h; are lower than those obtained in 
the earlier experiment by Whitehead et al. (1974). The cause of the discrepancy is 
probably the entrance geometry they used: they did not smooth the left entrance 
wall as is done here. Our measurements, using their geometry, also give larger values 

5.3. The supercritical separation 

This experiment uses a flared channel which has a rectangular cross section but the 
width of the channel broadens downstream. Since the controlled flow occurs in the 
narrowest section and the flow is subcritical upstream, the flared section downstream 
is therefore expected to produce the desired supercritical flow. The theory in § ( 3 )  
predicts a separation of the supercritical flow from the left wall at some point down- 
stream of the channel. In this experiment, visual evidence is obtained of the separation 
and the points of separation are measured. The visual evidence is shown in figure 5 ,  
which gives both top and side view of the current. Figure 5 (photo 1) is a photo of the 
flow at zero rotation; the flow can be seen to broaden symmetrically as it leaves the 

of h;. 
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FIGURE 10. The width of the current, b ,  = b/b,, at the point of supercritical separation as a 
function of the rotation, f* = f/f,,,, where b,, and f,,, are respectively the width and the rotation 
a t  which the supercritical separation occurs in the control section. 

control section. The next few photos are taken at increasingly higher rotation rates. 
These photos clearly show the gradual deflection of the flow to the right and the 
separation of the flow from the left wall. One may also note the progressive upstream 
displacement of the separation point as the rotation increases, i.e. the width of the 
separated flow decreases as rotation increases. This width is measured in the experi- 
ment and can now be compared with the theoretical prediction of the width given by 
( 3 . 2 3 ) .  For comparison, it is helpful to normalize the frequency of the rotation by the 
frequency at which the flow separates at  the control section, and the width of the 
separation by the width of the control section. In this case, ( 3 . 2 3 )  becomes 

b4, + ( 2 f ~ 8  - 3 f g 2 -  1)  b i  + fg3 = 0, 

with b, = b/b,  and f* = f/f,, where fnl = (8g’&/b&)*. 
The theoretical curve given by ( 3 . 2 3 )  is shown in figure 10 as a solid curve. In this 

figure, f* = 1 and b, = 1 represent the separation in the control section and for b, > 1, 
the separation occurs in the flared section. The measurements in the same figure show 
an initial tendency to follow the curve starting from f, = 1, but depart significantly 
further downstream. The discrepancy is due to the large curvature of the wall down- 
stream which cannot be accounted for by this simple theory. In  conjunction with this 
experiment, it will be noted that the critical transport obtained for this flared channel 
shows the same relation with the rotation as that shown in figure 9 ( b ) .  Hence the 
control flow is independent of the downstream geometry. 

6. Conclusion and discussion 
The foregoing comparisons between theory and experiment are generally favourable. 

The investigation has confirmed the existence of the controlled (critical) flow which 
has been verified in three different experiments. In  particular, the controlled flow is 
shown in each of the three experiments to be independent of the downstream con- 
ditions, namely, the fluid level of the downstream basin and the geometry of the 
channel downstream of the control section. The insensitivity of the controlled flow to 
the downstream conditions is thus in strong support of the concept of hydraulic 
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control. The investigation does, however, leave open the question concerning the 
mechanics of the separated critical flow. Hydraulic theory is shown to be incapable of 
describing this flow; a more detailed theoretical and experimental investigation in the 
future is required. Another unsatisfactory aspect of the investigation is the effect of 
friction. Even though it did not seem to have affected the experimental verification, 
in the sense that it did not alter the predicted relationships betwean the measured 
parameters, it was believed to be the main cause of the consistent overprediction of the 
measured transport by theory. An understanding of the processes through which the 
friction modifies the transport should be helpful in improving the prediction. Finally, 
an aspect of the experimental design that may also need some future studies and 
improvements is the upwelling in the upper basin. This could not be avoided owing to 
the limited size of the apparatus. The upwelling is believed to have contributed to some 
of the discrepancies in the measurement of the high-potential-vorticity flow. In future 
experiments, it  may be desirable to eliminate upwelling with a different experimental 
design. But, on the other hand, the experiment with upwelling perhaps still should be 
investigated since the actual ocean basin is also finite, and, moreover, the dense water 
in some of the ocean basins such as the Norwegian basin is believed to be formed by 
the sinking of surface-cooled water (Worthington 1970) which is similar to the upwelling 
in the experiment. 

The results obtained in this paper on the submerged weir-flow, on the flow through 
an irregular channel, and on the supercritical separation may be added to the previous 
hydraulic results in their application to the study of the ocean currents in straits and 
sills. The present result on the flow through channels of irregular cross section should 
now make it possible to account for the actual geometry of the sill, especially for the 
zero-potential-vorticity current for which the result has been obtained. The previous 
applications by Stalcup et al. (1975), and Lonsdale (1976) are examples suitable for 
re-examination with our results; they studied currents in the low latitude region where 
the radius of deformation of the current is usually greater than the width of the sill and 
the flow has zero potential vorticity. In the case studied by Lonsdale (1976), the 
current flows into the Panama Basin, which is close to the equator and non-rotating 
hydraulics applies. His case can be computed quite simply with (3.19) using f = 0. The 
calculation gives about 15 yo higher transport than his observed value. (The transport 
calculated by him assuming an equal area rectangular channel is slightly lower than 
that observed.) After making allowance for friction which is obviously present in his 
observations and, say, a correction for the friction of 10-15 yo similar to that given by 
our experiment, the value is now approximately that which was observed. Of course, 
the size of the correction used here, as well as the significance of the 15 % difference may 
be questioned. But, the consideration of realistic geometry does appear to be consistent 
in view of the presence of friction. The flow studied by Stalcup et al. (1975) in the 
Anegada-Jungfern Passage of the Caribbean sea is more affected by rotation. They 
did not show a cross section of the control sill. But, if one assumes a parabolic shape 
cross section as they have shown for the section upstream of the sill, the computation 
should also yield a greater transport than that obtained with an equivalent area 
rectangular section. The only other application with the rotating weir appears to be 
by Whitehead et al. (1974). They studied the flow of Norwegian water through the 
Denmark Strait. This strait is in the high latitude region where the radius of defor- 
mation is more comparable to the width of the channel. Therefore, the flow is likely to 
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have finite potential vorticity. The present result on the irregular channel geometry 
has not been extended to the finite-potential-vorticity flow. But the effect of the 
geometry on the flow is probably qualitatively similar to that noted in 5 3. Judging 
from the cross sect.ion of the sill given by Whitehead et al., it appears that the geometry 
favours more transport than the one having an idealized rectangular shape since the 
sill is deeper on its left-hand side, i.e. the high-velocity side. Their previous estimate 
of the transport obtained by assuming a rectangular channel has been somewhat 
lower. Consideration of the real geometry can probably increase their estimate. They 
also noted that the current in the sill is separated. In  this case the transport can be 
increased even more if one accepts and uses the empirical results obtained in this paper. 

The other results on the submerged weir-flow and the supercritical boundary current 
may also have application in the ocean. So far there seems to be a lack of adequate field 
observation of these two types of flows. Future field measurements and comparison 
with the hydraulic results can be of interest. 

I am indebted to Dr M. E. Stern for arousing my int,erest in the topic and his valuable 
comments on this work. I thank Dr J. C. McWilliams and Dr B. A. Taft for providing 
the opportunity for the preparation of the manuscript at the University of Washington, 
and the financial support of the National Science Foundation under grant OCE 79-0187 
is acknowledged. This research was conducted at  the University of Rhode Island. My 
gratitude is extended to Dr R. Lambert for his financial support’ a t  URI. 

Appendix. Momentum and specific energy of the controlled flow 
The purpose of this appendix is to define the momentum and the specific energy of 

the controlled flow mentioned in § 2 .  These two quantities have been found useful in 
non-rotating hydraulics for characterizing the controlled flow, in the sense that they 
are minimum with respect to the critical speed, as well as for studying other channel 
flow problems, for example, the hydraulic jumps of the supercritical flows. A definition 
of these two quantities for the rotating flow is, therefore, warranted. Furthermore, 
based on the momentum and the specific energy defined here, one can proceed in a 
manner as outlined by Gill (1977) and Stern (I  979) to demonstrate the results given in 
tj 2 concerning the hydraulic control. The possibility of this will be briefly indicated 
below. 

The definition of the momentum can be obtained by integrating the shallow-water 
equation (2.1 a )  over the cross-section of the current, from x1 to x2 and from 7 to h. 
For the x-component of the equation, the integration yields a simple balance between 
the integrated coriolis force and the hydrostatic pressure force, which is of no interest 
here. For the y-component, the integrated momentum balance is 

$/ IHu2++gHa- f+dx  = - W ,  

where 

is the sum of the pressure forces exerted by the channel on the flow. The two terms in 
the bracket are evaluated at x1 and x2 as indicated by the subscripts and are zero if the 
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channel has no vertical side walls. The integral on the left-hand side of (A 1) will now be 
defined as the momentum of the rotating open channel flow and will be denoted by 

or 

M = 1:: (v + gH/2v - f @ / v H )  d$. 

For f = 0, M reduces to its familiar form for the non-rotating flow. The effect of the 
rotation is to  introduce a term f$ which represents the momentum due to the deflection 
of streamlines by the coriolis force. 

With the definition (A 2)  one can now compute the velocity a t  the minimum of M 
using the solutions (3.1) and (3.2) for the constant-potential-vorticity flow and compare 
it with the velocity given by (3.11). The calculation assumes constant transport, so H, 
in (3.1) and (3.2) can be replaced by v,  and M minimized with respect to v,. The 
minimum is calculated numerically, and the two velocities are indeed the same. 
A comparison is also made with the speed computed from the critical flow formula 
given by Stern (1974). The same result is again obtained. Hence the minimum 
momentum represents the controlled flow. 

A definition of the specific energy consistent with that given in nonrotating 
hydraulics can be obtained by integrating (2.2) over the cross section of the current 
and making use of (2.4). The result of the integration is simply dE,/dy = 0, where E, 
is given by (2.7). The specific energy can now be defined as E, = E O - - ~ ,  which is 
essentially the Bernoulli energy measured relative to the channel floor. Thus the 
equation for the specific energy is just 

dE,/dy = - d?lo/dy, (A 3) 

since E, is constant. It should be noted that E, along x2 = 0 is used strictly for con- 
venience: its value along other streamlines can also be used. 

With the above definition for E,, it is easily seen that minimizing E, is basically the 
same as minimizing ?lo. Hence, for the constant-potential-vorticity flow, the critical 
speed computed with (3.11) is also the one that gives the minimum specific energy. 

The statements about the minimum of the momentum and the specific energy are 
shown above to be applicable to the controlled, constant-potential-vorticity flow. In  
order to show their applicability to controlled rotating flow in general, the procedure 
outlined by Gill (1977) or the ‘control’ rule given by Stern (1979) can be invoked. As 
an illustration, consider the simple example of the flow in a channel of variable 
elevation but of constant width. For the flow in this channel, the flow variables are 
functions of two parameters only, and let these be Q and vo which follow from (2.5), 
(2.6) and (2.8). Thus, for a constant transport, (A 1) and (A 3) are respectively, 

(aM/av,) (dv,/dy) = - gH aylaydx and (aE,/av,) (dv,/dy) = - g  aqo/ay. 

These two relations show that at  ay/ay = 0, aM/av, and aE,/av, must aIso vanish. 
Differentiating the above relations once more with respect to y a t  ay/ay = 0, one has 

1: 

7 
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and 
(azEt/avi) (dvo/dy)2 = -gd2qo/dy2. 

Thus, at  the constriction, i.e. at  the maximum elevation q, both M and E, are mini- 
mized with respect to the velocity vo. One constraint which the above imposes is that 
dvo/dy + 0. As a result, the speed must change continuously across the constriction, 
for example from subcritical to supercritical, or vice versa. The Constriction, at  which 
the least momentum and the specific energy are achieved, is also a constriction with 
respect to the width, even though the foregoing has considered only the constriction 
with respect to the elevation. This follows from (A 1 )  which shows that at  the section 
of the smallest M ,  a downstream decrease in the width will further decrease M .  Since 
a steady solution cannot be realized for M less than its smallest value, the width 
therefore must be the narrowest at  the constriction. 

Two remaining results in 8 2 can also be shown here, namely, that the controlled 
flow also has the maximum transport at  either a constant M or a constant E,  and that 
the critical speed equals the long-wave speed. For the first one, assume that M(Q, vo) 
= constant. Then aM/avo+ (aM/aQ) (dQ/dv,) = 0 which shows that at the critical 
speed dQ/dvo = 0 since aM/avo = 0. The second derivative of M at aM/av0 = 0 is 
a2M/avi + (aM/aQ) (d2Q/dv;) = 0. Therefore, the transport is a maximum since 
a2M/avi > 0 and aM/aQ > 0. The fact that aM/aQ > 0 can be seen from (A 2) where 
H increases with Q at fixed vo, and hence M is proportional to Q. For the second result, 
assume a uniform channel for which W in (A 1) is zero. For a flow with a stationary 
disturbance, (A 1) is simply dM/dy  = 0 or (aM/avo) (dv,/dy) = 0,  where vo contains 
both a mean current and a small disturbance. Since for the perturbation dvo/dy is 
non-zero, aM/avo must vanish. For an infinitesimal disturbance, this implies that the 
velocity, which gives the minimum momentum, is also the long-wave speed. 
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